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Scattering operators on Fock space: 111. Euclidean invariant 
scattering amplitudes and SL(2, R)T 

W H Klink 
Department of Physics and  Astronomy, University of Iowa, Iowa City, IA 52242, USA 

Received 23 June  1986 

Abstract. Scattering operators invariant under  the simplest spacetime group, namely the 
two-dimensional Euclidean group E ( 2 ) ,  are  investigated. Operators that  commute with 
the action of E ( 2 )  on a Fock space generated by an  infinite-dimensional representation of 
E(2)  are  constructed and  shown to form a Lie algebra of SL(2 ,R) .  Unitary scattering 
amplitudes which include production reactions are  given as matrix elements of the discrete 
series of representations of SL(2, RI .  

1. Introduction 

The goal of this series of papers is to construct representations of scattering amplitudes 
that satisfy general quantum mechanical properties such as unitarity, relativistic invari- 
ance and crossing. In previous papers only internal symmetry degrees of freedom were 
considered and the scattering amplitudes constructed had no spacetime dependence. 
For example, in Klink (1987) SO( N )  internal symmetries generate production partial- 
wave amplitudes related to the matrix elements of SL(2, R). A physical example is 
SU(2) isospin symmetry, where the three pions, T+, TO and 7 ~ - ,  generate a symmetric 
Fock space on which the SL(2, R) operators act. 

In  this paper we want to extend the analysis begun in Klink (1987, hereafter referred 
to as 11) to spacetime groups for which the one-particle space is an infinite-dimensional 
Hilbert space. Though the obvious group here is the Poincari group, because of some 
delicate limits we will work instead with the somewhat simpler two-dimensional 
Euclidean group E(2) and defer the analysis of the Poincare group to a succeeding 
paper. The limits occur when making the transition from Fock spaces generated by 
finite-dimensional representation spaces of compact internal symmetry groups to Fock 
spaces generated by infinite-dimensional representation spaces of non-compact space- 
time groups. 

To study these limits we will start in P 2 with a symmetric Fock space generated 
by the (21+ 1)-dimensional representation of SO(3) and in § 3 let I go to infinity, in 
such a way as to get a representation of E(2). In the limit some SL(2 ,R)  operators 
are no longer well defined. However, when a transformation to a continuous momentum 
basis is made, the operators commuting with the E(2) action again form a SL(2, R) 
Lie algebra. This means that unitary partial-wave amplitudes that are E(2) invariant 
can again be given as SL(2, R) matrix elements. 
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2. SL(2, R) operators dual to the (21 + 1)-dimensional representation of SO(3) 

We start with a (21+ 1)-dimensional representation space V' of SO(3). It generates a 
Fock space S( V ' )  given by 

which is the direct sum of n-fold symmetric tensor products of V'.  The irreducible 
representation content L of some of the low-lying particle states are 

L=O . . .  1...21...31...41... 
n=Ox 

1 X 

2x . . .  x 
3 x  . . .  X 

4x . . .  X 

For n = 2, the two-particle state, L = 0,2,4, . . . ,21, so there is no multiplicity. For a 
general n-particle state, the largest L value is nl, which is also multiplicity free. 
However, for L values less than nl there will in general be multiplicity, so that, unlike 
the case of 1 = 1 analysed in 11, n, L and L3 d o  not uniquely fix a state. Notice also 
the 'anti' thresholds in (2), where, as L gets larger than 21, the two-particle states no 
longer contribute, and for L larger than 31 the three-particle states no longer contribute, 
and so forth. This is the opposite of the PoincarC group, where the two-particle states 
always contribute, no matter how large the invariant mass is. 

To find operators that commute with the action of SO(3) on S( V ' ) ,  it is useful to 
introduce a holomorphic Hilbert space, HL:,,, (Bargmann 1962, Segal 1956), which 
is isomorphic to § ( V I ) .  HL:,,, consists of holomorphic functions in (211- 1) variables 
with norm 

Since HL:,,,  is isomorphic to S (  V ' ) ,  it can also be decomposed into a direct sum of 
n-particle subspaces. A convenient orthogonal basis for an  n-particle subspace is given 
by z,, . . . zm,, where m, . . . m, range over all possible values from - 1  to +i. 

Let D ( R )  = D!,,,,(R) be the matrix element of R E SO(3) in V'. Then the action 
of SO(3) on elements in HL:,+, is given by 

(4) ( l- R f) ( z ) = f( D - ( R ) z ) f E  HL:/+ , .  

The infinitesimal operators are 

where c L  = [ j (  j + 1) - m(m * 
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We now want to find operators that commute with the SO(3) action on HL:,,,. 
Since the matrix elements of SO(3) form a subgroup of SO(21-t l ) ,  a theorem of Howe 
(1985) says that operators exist that commute with S0(21+ 1 )  and form a Lie algebra 
of SL(2, R). The point of this paper is to show that such SL(2, R) operators exist even 
when 1 goes to infinity. 

For 1 finite we consider a polynomial p(z) which is invariant under the SO(3) 
action of equation (5). Such a polynomial can be obtained by extracting the L = 0 
piece of the tensor product of 1 with itself. Then p is of the form 

+ I  

p(z)= c (-l)mZmZ-m. ( 6 )  

(X:f)(z) = P ( Z l f ( Z ) .  ( 7 )  

m = - I  

Define 

Then [ X i ,  L:] = [ X i ,  L:] = 0 because L:p = Lkp = 0. A lowering operator can corre- 
spondingly be defined as 

where p ( d / a z )  means z(-l)"(a/az,)(d/dz-,). X!. also commutes with L: and LL, 
and is the adjoint of X:. 

(X") = p(a/az)f(z) (8)  

Finally the number operator, given by 

zm(&) (9) 

commutes with the SO(3) action of equation (4), has the value n on each n-particle 
subspace and has commutation relations with XL of the form 

[ f i ' ,  Xk] = f 2x: 

[X!, X:] = 2(21+ 1)I+4fi1 

where I is the identity operator on HLjI+, .  If Xh is defined as 

x;=4(21+1)+fi' ( 1 1 )  
the commutation relations become 

[XA, XL] = *2x* I 

[X!, X i ]  = 4x;  

which are the commutation relations for SL(2,R). 
These operators form a reducible representation of the Lie algebra of SL(2, R). To 

find the connection between irreducible representations of the covering group of 
SL(2, R) and partial-wave amplitudes of the scattering operator, we transform the 
SL(2, R) operators XL, X ;  to S (  VI) .  Let &, ,,,,, be a basis element in the n-particle 
subspace of S (  VI ) ;  Zm, m,, is assumed to be properly symmetrised so that the order of 
the basis labels m, . . . m, is irrelevant. Then using the correspondence gmI m,,  e 
z,, . . . zm,, and equations (7) and (8), we see that 

X i C m ,  m,, (- l )me*m, m,,m.-m 
m 

X!&,  ,,,,, = -l)mle*m, m,,  +all possible permutations 

while fi '  is just multiplication by n for any element in the n-particle subspace. 



3580 W H Klink 

Since X L ,  6‘ all commute with L:, L i  we actually want the action of the SL(2, R) 
Lie algebra elements on states e*:,:, where 7 is a multiplicity label. The connection 
between these two bases is given by SO(3) Clebsch-Gordan coefficients: 

Then 

We will not compute the K coefficients, for our goal is to pass to the limit as 1 +E, 
in which case the group is no longer S0(3 ) ,  but E(2), for which the K’ coefficients 
are much easier to compute (see equations (36) and (37)). 

Starting with a lowest state (i.e. a state such that X !  acting on it annihilates the 
state), a tower of particles can be generated by repeated application of the raising 
operator. Such a tower of multiparticle states will carry a (projective) representation 
of SL(2, R). These towers are labelled by h > 0, the irreducible representation label 
of the positive discrete series of representations of the covering group of SL(2, R) (we 
use the notation of Sally (1967)), n the number of particles and 7 the multiplicity 
parameter. Let n m l n  be the lowest possible value of n in a given tower; since the 
spectrum of Xd is given by 2( h + k ) ,  k = 0, 1,2,  . . . , we find from equation ( 1  1) that 

which gives the connection between the irreducible representation of SL(2, W) and 
nmln ,  which is in turn related to L (see equation (2)). 

Now choose the scattering operator to be the unitary operator U,, g E SL(2, R) 
acting on S( V‘). Then the partial-wave amplitude can be written as 

(15) 

where g depends on L and v’, and 7 is related to 7’ through the raising operator that 
connects the n’-particle subspace to the n-particle subspace. Though the partial-wave 
amplitude (equation (15)) is unitary, contains ‘production’ and is invariant with respect 
to S0(3 ) ,  it is not the most general partial-wave amplitude satisfying these properties. 
However equation ( 1 5 )  provides a convenient starting point for constructing more 
general amplitudes, because it is related to a matrix element of SL(2, R). These matrix 
elements have been analysed in great detail by Sally. 

(nL3Lrl I SI n’LL37’) = Oh,,,,(g) 

3. E(2) and SL(2, R) 

In § 2 we found amplitudes invariant under SO(3). In this section, by letting l + m ,  
we will get amplitudes invariant under E(2). E(2) is the semidirect product of SO(2) 
and T2,  the translation group in two dimensions. Since E(2) is non-compact, all of 
its unitary representations are infinite dimensional; they are given as induced rep- 
resentations, induced from one-dimensional representations of T2. The representation 
space is W = L2(0,2.rr), and for f~ W, as a function over E(2), it satisfies 

f ( g ( b ,  O)g(O, 8 ) )  = exP(-iP, * b ) f ( O )  
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where p o  = (E). Group elements are denoted by g = g ( b ,  4 )  E E(2), with a composition 
rule given by 

(16) g ( b ,  4 ) g ( b ' ,  4 ' )  = g ( b  + R$', 4 + 4 ' )  

Momentum wavefunctions can be defined by a map U to new variables 

$(PI = ( T f ) ( p )  

=f(s(O, R - ' ( p ) )  (18) 

where p = R ( p ) p ,  defines the rotation matrix R ( p )  E SO(2) and 

( u g , b , d l 4 ) ( p )  =exp(-ip '  b ) d ) ( R , ' p ) .  (19) 

ug(b,+)lp)  =exp(-iRdp ' b ) l R + p ) .  (20) 

On plane wave states this gives 

A convenient basis in W = L2(0,27r) is given by gm = e"'. The Fock space S(W) is 
defined in equation ( l ) ,  with W replacing V'. Basis elements in the n-particle subspace 
are given by 

m,, = e * , , @  ' -@im,,lsym 

+all permutations. 

S ( W )  is isomorphic to a holomorphic Hilbert space HL;, with the correspondence 
Zm ,... ,,,,, t) zmI . . . z,,,,,. Let f(z) E HL:, where z = {z,}::-~; then the action of E(2) on 
f E HL; is given by 

where Jm is a Bessel function. For infinitesimal transformations this gives 

a f-x 

( L 3 f ) ( ~ )  = C mzm-ff(z) 
m = -x azm 

which is a representation of the Lie algebra of E(2) that is irreducible on the one-particle 
subspace of HLE, with irreducible representation label p .  
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We now want to find operators that commute with L3 and L , .  In § 2 the operators 
n*' and X L  were shown to commute with L: and LL, the Lie algebra elements of SO(3) .  
In the contraction limit (see Gilmore 1974) SO(3) goes over to E ( 2 ) .  We obtain this 
contraction limit by defining 

L ,  = Iim L: 
I -x 

1 ,  L ,  = lim - L, 
1-0c K 
K -0c 

such that liml+m,K+m I /  K = p .  Then 

[ K L , ,  K L - ] = 2 L 3  

[ L , ,  L - ] = 2 L , / K 2 + 0  as K + m .  

Further, from equation ( 5 ) ,  LL =I; cjC,z,+, a/az, becomes 

+' c;, a 
L , =  lim C -z ,+~-  

1-0c , = - I  K az, 

which agrees with equation (23 ) .  

However, a problem arises here, in that 
Since X L  commutes with L: and LL, we would like to take the limit on X L  also. 

no longer keeps elements f~ HL; in HLL. On the other hand 

a a  +X 

(X- f ) ( z )=  c (-l)m--f(z) 
ni = - x  az, az-, 

is a perfectly well defined (lowering) operator, and it and 6 commute with L3, L , .  
Though XL is the adjoint of X !  on HL$+, ,  X -  on HLL no longer has an  adjoint. 

To see more precisely what this means, we want to compute the action of X -  on 
n-particle momentum space wavefunctions in S(W). Using the correspondence between 
I?,,, ,... ,,, and z,, . . . z ,~ , , ,  we obtain 

which is similar to equation (13). After some manipulation the action of X -  on 
n-particle momentum wavefunctions c $ ~  ( p ,  , . . . , p , )  is given by 

(X-$n)(Plr. . . ,Pn-2)= d a $ n ( P l , . *  * t P n - z , p c x , p m + r )  (29) lo2r 
(pa = p(FPi',")), with a corresponding action on n-particle plane-wave states: 
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We have seen that X -  does not have an  adjoint; the reason for this can now be seen 
more clearly. We write (formally) (4,,, X - d f l + 2 ) s ( H )  ( X ; + , , ,  4 f l + Z ) S ( M )  and obtain 

( X + & ) ( P I , .  ' .  , P n + 2 )  = ( X 3 J n ) ( P l , . .  ., P n c d  

= 6 2 ( p ,  + p z ) 4 , ( p 3 , .  .  all permutations (31) 

X+lP ,,.. * , P f l ) s y m =  d ~ l P l  , . . . ,  P f l , P ~ , P ~ + ~ ) ~ y ~ '  lo2T 
If 4,, E S(W), X + 4 ,  & S(W) because of the delta functions in equation (31). In that 
sense X -  does not have an  adjoint. However, the action of X ,  on plane-wave states 
is well defined and shows how n-particle plane waves become ( n  + 2)-particle plane 
waves. 

To see how X ,  generates an  SL(2,R) algebra, we want to decompose the n-particle 
states into direct integrals of irreducible representations of E(2). To obtain this 
decomposition we use the Mackey double coset machinery (Klink 1969) to reduce 
n-fold symmetric tensor products. If f f l (  e l ,  . . . , 0,) is an  element of the n-particle 
subspace, set 0, = 0 + D,, i = I ,  . . . , n, and write 

( T D , f f l w  =f( 0 + Q ,  . . . , 0 + W .  (32) 
The action of g ( b ,  4 )  E E(2) commutes with TD, if l: sin D, = O .  For n-particle 
momentum space wavefunctions, this gives 

( u k , 4 f l ) ( p ) = + f l ( R ( p ) k , , . . . ,  R ( P ) k n )  (33) 

where 
n (3 p ,  = R ( P ) k ,  2 p ,  = P =  R ( P ) X k ,  = R ( P )  

, = I  

and P is the irreducible representation label in the direct integral decomposition. The 
various momenta are given by 

cos e, cos D, 
"='(s in  t?!) k l = p (  sin D , )  
P k , = p X ( .  cos D, ) = (  pl :  cos D, )=(;). 

sin D, 

which agrees with equation (19). The 'double coset' labels ki d o  not change under the 
action of g ( b ,  4 ) ;  they therefore label the multiplicity of representations for a given 
irreducible representation P. 

Now set 

6 n ( p ,  k l , . . . ,  k n ) = ( T k , 4 n ) ( P ) *  (35) 
Then 
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and 

The states / P ,  k l ,  . . . , kn)cym are the analogue of gi,; of equation (13), where now 
refers to the collection of double coset vectors { k , } : =  I .  

Finally, we can compute the commutators of X ,  and n* on IP, k , ,  . . . , k,), , , .  
[ G ,  X,] = +2X, is trivial since n̂  = n on an n-particle subspace. Using equations (36) 
and (37), we obtain 

[X-, X+IIp, k l , .  . . ,  kn)sym = ( 2 ~ 6 ( 0 )  +2n)lP, k l ,  . . . ,  k n ) s y m  

so that, as an operator relation on plane-wave states 'spanning' S(W), we have 
[ X - ,  X , ]  = I + 2n*, which is just the required SL(2, R) commutation relation. Thus, 
just as with S0(3)- .S(V') ,  we have S(W) carrying a representation of SL(2 ,R) ,  
invariant under E(2). 

The decomposition of the n-particle subspaces of S(W) differs from that of S( V') 
given in (2)  because the irreducible representations of E(2) are labelled by a continuous 
positive parameter. On the two-particle subspace P can range from 0 to Zp,  with no 
multiplicity. However, on a general n-particle subspace ( n  > 2), where P ranges 
between 0 and np, the multiplicity is given by the double coset vectors { k ! } : = , .  For a 
fixed P, repeated application of X ,  generates a tower of states that form an irreducible 
representation of the discrete series of representations of SL(2, R). Call the unitary 
operator that acts on this tower of states U,, g E SL(2, R); since U, commutes with 
the action of E(2) on S(W) and is unitary, it can be used as a representation of the 
scattering operator. As in 8 2 the partial-wave amplitudes are then given by 

(nP{ k, ) I  SI n 'P{  k :  1) = D : , y ( g  

where D;;'"(g) is a matrix element of SL(2, iw) whose irreducible representation is 
given by the minimum number of particles that can occur in the tower of states generated 
by repeated application of X ,  on In'P{k:}). 

4. Conclusion 

We have shown how to construct partial-wave amplitudes that automatically include 
production reactions, are invariant under the two-dimensional Euclidean group and  
are unitary. These partial-wave amplitudes are given as matrix elements of  the discrete 
series of representations of SL(2, RI. Such partial-wave amplitudes are not, of course, 
the most general partial-wave amplitudes that satisfy these properties. For a given 
n-particle subspace, any operator with a kernel of the form A4;yl,{k;) that mixes the 
different subenergies also satisfies the properties mentioned above but will not change 
the particle number. 

It is also possible to define raising and lowering operators that connect n to n * N 
particle subspaces and are invariant under the Euclidean group, by writing (for the 
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lowering operator) 

( x ” n ) ( P l , .  . . ,Pn-N) 

= d a , ,  . . . , d a ~ S ~ ( q , + .  . . + Q N ) ~ ( P ~ ,  . . , P ~ - N ,  q l , .  . . , qN). 

These operators are the analogue of operators given in equation (8), where p ( z )  now 
has a degree greater than two and is invariant under SO(3).  Generally these types of 
operators do not close to form a finite-dimensional Lie algebra, as was the case for 
the raising and lowering operators of equations (7 ) ,  (8), (29) or (31). This can be seen 
by making use of the fact that the commutator of any two operators commuting with 
E(2) again gives an operator commuting with E(2) on §(W). In particular, the commu- 
tator of the lowering operator X ?  given above with the raising operator X ,  of equation 
(37) gives an operator that lowers the number of particles by one. By computing 
repeated commutators of operators that change the number of particles by *l ,  an 
infinite-dimensional Lie algebra of operators qn §(W) is generated that commutes with 
E(2). In contrast to SL(2, R) the unitary group action of such an infinite-dimensional 
Lie algebra on S(W) is not known. 

The argument given here can also be turned around. That is, SL(2, R) operators 
commute with a much larger group than E(2), namely SO(co), the set of all unitary 
operators on §(W) (for a definition of SO(co) see Hida (1980)). We have therefore 
extended Howe’s list (Howe 1985) of dual pairs of groups to include infinite parameter 
groups for both parts of the dual pair. 

References 

Bargmann V 1962 Proc. Narl Acad. Sci. USA 48 199 
Hida T 1980 Brownian Motion ed A V Balakrishnan (Berlin: Springer) 
Howe R 1985 Applicafions of Group Theory in Physics and Marhemarical Physics ed M Flato, P Sally and 

Gilmore R 1974 Lie Groups, Lie Algebras and Some of Their Applications (New York: Wiley) ch 10 
Klink W H 1969 Lectures in Theoretical Physics vol XID,  ed K T Mahanthappa and W E Brittin (New York: 

- 1987 J. Phys. A :  Mafh.  Gen. 20 3565-76 
Sally P 1967 Memoirs o f fhe  American MathemaficalSociety (Providence, RI:  American Mathematical Society) 
Segal I 1956 Trans. Am. Math. Soc. 81 106 
Tung W K 1985 Group Theory in Physics (Singapore: World Scientific) ch 9 

G Zuckerman (Providence, RI:  American Mathematical Society) 

Gordon and Breach) p 43 


